Releasing Search Queries and Clicks Privately

Presented at: 18th International World Wide Web Conference (WWW2009)

by Aleksandra Korolova, Krishnaram Kenthapadi, Nina Mishra, Alexandros Ntoulas


The question of how to publish an anonymized search log was brought to the forefront by a well-intentioned, but privacy-unaware AOL search log release. Since then a series of ad-hoc techniques have been proposed in the literature, though none are known to be provably private. In this paper, we take a major step towards a solution: we show how queries, clicks and their associated perturbed counts can be published in a manner that rigorously preserves privacy. Our algorithm is decidedly simple to state, but non-trivial to analyze. On the opposite side of privacy is the question of whether the data we can safely publish is of any use. Our findings offer a glimmer of hope: we demonstrate that a non-negligible fraction of queries and clicks can indeed be safely published via a collection of experiments on a real search log. In addition, we select an application, keyword generation, and show that the keyword suggestions generated from the perturbed data resemble those generated from the original data.

Keywords: Data Mining

Resource URI on the dog food server:

Explore this resource elsewhere: