Smart Miner: A New Framework for Mining Large Scale Web Usage Data

Presented at: 18th International World Wide Web Conference (WWW2009)

by Murat Ali Bayir, Ismail Hakki Toroslu, Ahmet Cosar, Guven Fidan


In this paper, we propose a novel framework called SmartMiner for web usage mining problem which uses link information for producing accurate user sessions and frequent navigation patterns. Unlike the simple session concepts in the time and navigation based approaches, where sessions are sequences of web pages requested from the server or viewed in the browser, Smart Miner sessions are set of paths traversed in the web graph that corresponds to users' navigations among web pages. We have modeled session construction as a new graph problem and utilized a new algorithm, Smart-SRA, to solve this problem efficiently. For the pattern discovery phase, we have developed an efficient version of the Apriori-All technique which uses the structure of web graph to increase the performance. From the experiments that we have performed on both real and simulated data, we have observed that Smart-Miner produces at least 30% more accurate web usage patterns than other approaches including previous session construction methods. We have also studied the effect of having the referrer information in the web server logs to show that different versions of SmartSRA produce similar results. Our another contribution is that we have implemented distributed version of the Smart Miner framework by employing Map/Reduce Paradigm. We conclude that we can efficiently process terabytes of web server logs belonging to multiple web sites by our scalable framework.

Keywords: Data Mining

Resource URI on the dog food server:

Explore this resource elsewhere: