Parallel Materialization of the Finite RDFS Closure for Hundreds of Millions of Triples

Presented at: 8th International Semantic Web Conference (ISWC2009)

by Jesse Weaver, James Hendler

Webpage: http://data.semanticweb.org/pdfs/iswc/2009/paper241.pdf
Webpage: http://dx.doi.org/10.1007/978-3-642-04930-9_43
Webpage: http://www.springerlink.com/content/77x71125037k6583

In this paper, we consider the problem of materializing the complete finite RDFS closure in a scalable manner; this includes those parts of the RDFS closure that are often ignored such as literal generalization and container membership properties. We point out characteristics of RDFS that allow us to derive an embarrassingly parallel algorithm for producing said closure, and we evaluate our C/MPI implementation of the algorithm on a cluster with 128 cores using different-size subsets of the LUBM 10,000-university data set. We show that the time to produce inferences scales linearly with the number of processes, evaluating this behavior on up to hundreds of millions of triples. We also show the number of inferences produced for different subsets of LUBM10k. To the best of our knowledge, our work is the first to provide RDFS inferencing on such large data sets in such low times. Finally, we discuss future work in terms of promising applications of this approach including OWL2RL rules, MapReduce implementations, and massive scaling on supercomputers.

Parallel Materialization of the Finite RDFS Closure for Hundreds of Millions of Triples was presented at this event.

Keywords: Semantic Web


Resource URI on the dog food server: http://data.semanticweb.org/conference/iswc/2009/paper/research/241


Explore this resource elsewhere: