RAPID: Enabling Scalable Ad-Hoc Analytics on the Semantic Web

Presented at: 8th International Semantic Web Conference (ISWC2009)

by Radhika Sridhar, Padmashree Ravindra, Kemafor Anyanwu

Webpage: http://data.semanticweb.org/pdfs/iswc/2009/in-use/paper208.pdf
Webpage: http://dx.doi.org/10.1007/978-3-642-04930-9_45
Webpage: http://www.springerlink.com/content/a23t095824791156

As the amount of available RDF data continues to increase steadily, there is growing interest in developing efficient methods for analyzing such data. While recent efforts have focused on developing efficient methods for traditional data processing, analytical processing which typically involves more complex queries has received much less attention. The use of cost effective parallelization techniques such as Google’s Map-Reduce offer significant promise for achieving Web scale analytics. However, currently available implementations are designed for simple data processing on structured data. In this paper, we present a language, RAPID, for scalable ad-hoc analytical processing of RDF data on Map-Reduce frameworks. It builds on Yahoo’s Pig Latin by introducing primitives based on a specialized join operator, the MD-join, for expressing analytical tasks in a manner that is more amenable to parallel processing, as well as primitives for coping with semi-structured nature of RDF data. Experimental evaluation results demonstrate significant performance improvements for analytical processing of RDF data over existing Map-Reduce based techniques

Keywords: Semantic Web


Resource URI on the dog food server: http://data.semanticweb.org/conference/iswc/2009/paper/inuse/208


Explore this resource elsewhere: